knucklebones/utils/tween.lua

401 lines
14 KiB
Lua
Raw Permalink Normal View History

2023-08-12 11:36:14 +02:00
-- https://github.com/kikito/tween.lua
--[[
MIT LICENSE
Copyright (c) 2014 Enrique García Cota, Yuichi Tateno, Emmanuel Oga
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
]]
-- Modified by Simon Cambier to better fit TIC-80 restrictions
---@return Tween
function require_tween()
-- easing
-- Adapted from https://github.com/EmmanuelOga/easing. See LICENSE.txt for credits.
-- For all easing functions:
-- t = time == how much time has to pass for the tweening to complete
-- b = begin == starting property value
-- c = change == ending - beginning
-- d = duration == running time. How much time has passed *right now*
---@class Tween
local Tween = {}
local Tween_mt = { __index = Tween }
local pow, sin, cos, pi, sqrt, abs, asin = math.pow, math.sin, math.cos, math.pi, math.sqrt, math.abs, math.asin
-- linear
local function linear(t, b, c, d) return c * t / d + b end
-- quad
local function inQuad(t, b, c, d) return c * pow(t / d, 2) + b end
local function outQuad(t, b, c, d)
t = t / d
return -c * t * (t - 2) + b
end
local function inOutQuad(t, b, c, d)
t = t / d * 2
if t < 1 then return c / 2 * pow(t, 2) + b end
return -c / 2 * ((t - 1) * (t - 3) - 1) + b
end
local function outInQuad(t, b, c, d)
if t < d / 2 then return outQuad(t * 2, b, c / 2, d) end
return inQuad((t * 2) - d, b + c / 2, c / 2, d)
end
-- cubic
local function inCubic(t, b, c, d) return c * pow(t / d, 3) + b end
local function outCubic(t, b, c, d) return c * (pow(t / d - 1, 3) + 1) + b end
local function inOutCubic(t, b, c, d)
t = t / d * 2
if t < 1 then return c / 2 * t * t * t + b end
t = t - 2
return c / 2 * (t * t * t + 2) + b
end
local function outInCubic(t, b, c, d)
if t < d / 2 then return outCubic(t * 2, b, c / 2, d) end
return inCubic((t * 2) - d, b + c / 2, c / 2, d)
end
-- quart
local function inQuart(t, b, c, d) return c * pow(t / d, 4) + b end
local function outQuart(t, b, c, d) return -c * (pow(t / d - 1, 4) - 1) + b end
local function inOutQuart(t, b, c, d)
t = t / d * 2
if t < 1 then return c / 2 * pow(t, 4) + b end
return -c / 2 * (pow(t - 2, 4) - 2) + b
end
local function outInQuart(t, b, c, d)
if t < d / 2 then return outQuart(t * 2, b, c / 2, d) end
return inQuart((t * 2) - d, b + c / 2, c / 2, d)
end
-- quint
local function inQuint(t, b, c, d) return c * pow(t / d, 5) + b end
local function outQuint(t, b, c, d) return c * (pow(t / d - 1, 5) + 1) + b end
local function inOutQuint(t, b, c, d)
t = t / d * 2
if t < 1 then return c / 2 * pow(t, 5) + b end
return c / 2 * (pow(t - 2, 5) + 2) + b
end
local function outInQuint(t, b, c, d)
if t < d / 2 then return outQuint(t * 2, b, c / 2, d) end
return inQuint((t * 2) - d, b + c / 2, c / 2, d)
end
-- sine
local function inSine(t, b, c, d) return -c * cos(t / d * (pi / 2)) + c + b end
local function outSine(t, b, c, d) return c * sin(t / d * (pi / 2)) + b end
local function inOutSine(t, b, c, d) return -c / 2 * (cos(pi * t / d) - 1) + b end
local function outInSine(t, b, c, d)
if t < d / 2 then return outSine(t * 2, b, c / 2, d) end
return inSine((t * 2) - d, b + c / 2, c / 2, d)
end
-- expo
local function inExpo(t, b, c, d)
if t == 0 then return b end
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001
end
local function outExpo(t, b, c, d)
if t == d then return b + c end
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b
end
local function inOutExpo(t, b, c, d)
if t == 0 then return b end
if t == d then return b + c end
t = t / d * 2
if t < 1 then return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005 end
return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b
end
local function outInExpo(t, b, c, d)
if t < d / 2 then return outExpo(t * 2, b, c / 2, d) end
return inExpo((t * 2) - d, b + c / 2, c / 2, d)
end
-- circ
local function inCirc(t, b, c, d) return (-c * (sqrt(1 - pow(t / d, 2)) - 1) + b) end
local function outCirc(t, b, c, d) return (c * sqrt(1 - pow(t / d - 1, 2)) + b) end
local function inOutCirc(t, b, c, d)
t = t / d * 2
if t < 1 then return -c / 2 * (sqrt(1 - t * t) - 1) + b end
t = t - 2
return c / 2 * (sqrt(1 - t * t) + 1) + b
end
local function outInCirc(t, b, c, d)
if t < d / 2 then return outCirc(t * 2, b, c / 2, d) end
return inCirc((t * 2) - d, b + c / 2, c / 2, d)
end
-- elastic
local function calculatePAS(p, a, c, d)
p, a = p or d * 0.3, a or 0
if a < abs(c) then return p, c, p / 4 end -- p, a, s
return p, a, p / (2 * pi) * asin(c / a) -- p,a,s
end
local function inElastic(t, b, c, d, a, p)
local s
if t == 0 then return b end
t = t / d
if t == 1 then return b + c end
p, a, s = calculatePAS(p, a, c, d)
t = t - 1
return -(a * pow(2, 10 * t) * sin((t * d - s) * (2 * pi) / p)) + b
end
local function outElastic(t, b, c, d, a, p)
local s
if t == 0 then return b end
t = t / d
if t == 1 then return b + c end
p, a, s = calculatePAS(p, a, c, d)
return a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) + c + b
end
local function inOutElastic(t, b, c, d, a, p)
local s
if t == 0 then return b end
t = t / d * 2
if t == 2 then return b + c end
p, a, s = calculatePAS(p, a, c, d)
t = t - 1
if t < 0 then return -0.5 * (a * pow(2, 10 * t) * sin((t * d - s) * (2 * pi) / p)) + b end
return a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) * 0.5 + c + b
end
local function outInElastic(t, b, c, d, a, p)
if t < d / 2 then return outElastic(t * 2, b, c / 2, d, a, p) end
return inElastic((t * 2) - d, b + c / 2, c / 2, d, a, p)
end
-- back
local function inBack(t, b, c, d, s)
s = s or 1.70158
t = t / d
return c * t * t * ((s + 1) * t - s) + b
end
local function outBack(t, b, c, d, s)
s = s or 1.70158
t = t / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
end
local function inOutBack(t, b, c, d, s)
s = (s or 1.70158) * 1.525
t = t / d * 2
if t < 1 then return c / 2 * (t * t * ((s + 1) * t - s)) + b end
t = t - 2
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b
end
local function outInBack(t, b, c, d, s)
if t < d / 2 then return outBack(t * 2, b, c / 2, d, s) end
return inBack((t * 2) - d, b + c / 2, c / 2, d, s)
end
-- bounce
local function outBounce(t, b, c, d)
t = t / d
if t < 1 / 2.75 then return c * (7.5625 * t * t) + b end
if t < 2 / 2.75 then
t = t - (1.5 / 2.75)
return c * (7.5625 * t * t + 0.75) + b
elseif t < 2.5 / 2.75 then
t = t - (2.25 / 2.75)
return c * (7.5625 * t * t + 0.9375) + b
end
t = t - (2.625 / 2.75)
return c * (7.5625 * t * t + 0.984375) + b
end
local function inBounce(t, b, c, d) return c - outBounce(d - t, 0, c, d) + b end
local function inOutBounce(t, b, c, d)
if t < d / 2 then return inBounce(t * 2, 0, c, d) * 0.5 + b end
return outBounce(t * 2 - d, 0, c, d) * 0.5 + c * .5 + b
end
local function outInBounce(t, b, c, d)
if t < d / 2 then return outBounce(t * 2, b, c / 2, d) end
return inBounce((t * 2) - d, b + c / 2, c / 2, d)
end
Tween.easing = {
linear = linear,
inQuad = inQuad,
outQuad = outQuad,
inOutQuad = inOutQuad,
outInQuad = outInQuad,
inCubic = inCubic,
outCubic = outCubic,
inOutCubic = inOutCubic,
outInCubic = outInCubic,
inQuart = inQuart,
outQuart = outQuart,
inOutQuart = inOutQuart,
outInQuart = outInQuart,
inQuint = inQuint,
outQuint = outQuint,
inOutQuint = inOutQuint,
outInQuint = outInQuint,
inSine = inSine,
outSine = outSine,
inOutSine = inOutSine,
outInSine = outInSine,
inExpo = inExpo,
outExpo = outExpo,
inOutExpo = inOutExpo,
outInExpo = outInExpo,
inCirc = inCirc,
outCirc = outCirc,
inOutCirc = inOutCirc,
outInCirc = outInCirc,
inElastic = inElastic,
outElastic = outElastic,
inOutElastic = inOutElastic,
outInElastic = outInElastic,
inBack = inBack,
outBack = outBack,
inOutBack = inOutBack,
outInBack = outInBack,
inBounce = inBounce,
outBounce = outBounce,
inOutBounce = inOutBounce,
outInBounce = outInBounce
}
-- private stuff
local function copyTables(destination, keysTable, valuesTable)
valuesTable = valuesTable or keysTable
local mt = getmetatable(keysTable)
if mt and getmetatable(destination) == nil then
setmetatable(destination, mt)
end
for k, v in pairs(keysTable) do
if type(v) == "table" then
destination[k] = copyTables({}, v, valuesTable[k])
else
destination[k] = valuesTable[k]
end
end
return destination
end
local function checkSubjectAndTargetRecursively(subject, target, path)
path = path or {}
local targetType, newPath
for k, targetValue in pairs(target) do
targetType, newPath = type(targetValue), copyTables({}, path)
table.insert(newPath, tostring(k))
if targetType == "number" then
assert(type(subject[k]) == "number",
"Parameter '" .. table.concat(newPath, "/") .. "' is missing from subject or isn't a number")
elseif targetType == "table" then
checkSubjectAndTargetRecursively(subject[k], targetValue, newPath)
else
assert(targetType == "number",
"Parameter '" .. table.concat(newPath, "/") .. "' must be a number or table of numbers")
end
end
end
local function checkNewParams(duration, subject, target, easing)
assert(type(duration) == "number" and duration > 0,
"duration must be a positive number. Was " .. tostring(duration))
local tsubject = type(subject)
assert(tsubject == "table" or tsubject == "userdata",
"subject must be a table or userdata. Was " .. tostring(subject))
assert(type(target) == "table", "target must be a table. Was " .. tostring(target))
assert(type(easing) == "function", "easing must be a function. Was " .. tostring(easing))
checkSubjectAndTargetRecursively(subject, target)
end
local function getEasingFunction(easing)
easing = easing or "linear"
if type(easing) == "string" then
local name = easing
easing = Tween.easing[name]
if type(easing) ~= "function" then
error("The easing function name '" .. name .. "' is invalid")
end
end
return easing
end
local function performEasingOnSubject(subject, target, initial, clock, duration, easing)
local t, b, c, d
for k, v in pairs(target) do
if type(v) == "table" then
performEasingOnSubject(subject[k], v, initial[k], clock, duration, easing)
else
t, b, c, d = clock, initial[k], v - initial[k], duration
subject[k] = easing(t, b, c, d)
end
end
end
-- Tween methods
---@param clock number
---@return boolean # true if the tween has expired
function Tween:set(clock)
assert(type(clock) == "number", "clock must be a positive number or 0")
self.initial = self.initial or copyTables({}, self.target, self.subject)
self.clock = clock
if self.clock <= 0 then
self.clock = 0
copyTables(self.subject, self.initial)
elseif self.clock >= self.duration then -- the tween has expired
self.clock = self.duration
copyTables(self.subject, self.target)
else
performEasingOnSubject(self.subject, self.target, self.initial, self.clock, self.duration, self.easing)
end
return self.clock >= self.duration
end
function Tween:reset()
return self:set(0)
end
---@param dt number
---@return boolean # true if the tween has expired
function Tween:update(dt)
assert(type(dt) == "number", "dt must be a number")
return self:set(self.clock + dt)
end
-- Public interface
function Tween.new(duration, subject, target, easing)
easing = getEasingFunction(easing)
checkNewParams(duration, subject, target, easing)
return setmetatable({
duration = duration,
subject = subject,
target = target,
easing = easing,
clock = 0
}, Tween_mt)
end
return Tween
end